3.2154 \(\int \frac{(a+b x) (d+e x)^m}{\sqrt{a^2+2 a b x+b^2 x^2}} \, dx\)

Optimal. Leaf size=43 \[ \frac{(a+b x) (d+e x)^{m+1}}{e (m+1) \sqrt{a^2+2 a b x+b^2 x^2}} \]

[Out]

((a + b*x)*(d + e*x)^(1 + m))/(e*(1 + m)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0339207, antiderivative size = 43, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 33, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {770, 21, 32} \[ \frac{(a+b x) (d+e x)^{m+1}}{e (m+1) \sqrt{a^2+2 a b x+b^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*x)*(d + e*x)^m)/Sqrt[a^2 + 2*a*b*x + b^2*x^2],x]

[Out]

((a + b*x)*(d + e*x)^(1 + m))/(e*(1 + m)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])

Rule 770

Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dis
t[(a + b*x + c*x^2)^FracPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(f + g*x)*(b/2 + c
*x)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && EqQ[b^2 - 4*a*c, 0]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rubi steps

\begin{align*} \int \frac{(a+b x) (d+e x)^m}{\sqrt{a^2+2 a b x+b^2 x^2}} \, dx &=\frac{\left (a b+b^2 x\right ) \int \frac{(a+b x) (d+e x)^m}{a b+b^2 x} \, dx}{\sqrt{a^2+2 a b x+b^2 x^2}}\\ &=\frac{\left (a b+b^2 x\right ) \int (d+e x)^m \, dx}{b \sqrt{a^2+2 a b x+b^2 x^2}}\\ &=\frac{(a+b x) (d+e x)^{1+m}}{e (1+m) \sqrt{a^2+2 a b x+b^2 x^2}}\\ \end{align*}

Mathematica [A]  time = 0.0230584, size = 34, normalized size = 0.79 \[ \frac{(a+b x) (d+e x)^{m+1}}{e (m+1) \sqrt{(a+b x)^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*x)*(d + e*x)^m)/Sqrt[a^2 + 2*a*b*x + b^2*x^2],x]

[Out]

((a + b*x)*(d + e*x)^(1 + m))/(e*(1 + m)*Sqrt[(a + b*x)^2])

________________________________________________________________________________________

Maple [A]  time = 0.001, size = 33, normalized size = 0.8 \begin{align*}{\frac{ \left ( bx+a \right ) \left ( ex+d \right ) ^{1+m}}{e \left ( 1+m \right ) }{\frac{1}{\sqrt{ \left ( bx+a \right ) ^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)*(e*x+d)^m/(b^2*x^2+2*a*b*x+a^2)^(1/2),x)

[Out]

(b*x+a)*(e*x+d)^(1+m)/e/(1+m)/((b*x+a)^2)^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.22192, size = 28, normalized size = 0.65 \begin{align*} \frac{{\left (e x + d\right )}{\left (e x + d\right )}^{m}}{e{\left (m + 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(e*x+d)^m/(b^2*x^2+2*a*b*x+a^2)^(1/2),x, algorithm="maxima")

[Out]

(e*x + d)*(e*x + d)^m/(e*(m + 1))

________________________________________________________________________________________

Fricas [A]  time = 1.04108, size = 45, normalized size = 1.05 \begin{align*} \frac{{\left (e x + d\right )}{\left (e x + d\right )}^{m}}{e m + e} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(e*x+d)^m/(b^2*x^2+2*a*b*x+a^2)^(1/2),x, algorithm="fricas")

[Out]

(e*x + d)*(e*x + d)^m/(e*m + e)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (a + b x\right ) \left (d + e x\right )^{m}}{\sqrt{\left (a + b x\right )^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(e*x+d)**m/(b**2*x**2+2*a*b*x+a**2)**(1/2),x)

[Out]

Integral((a + b*x)*(d + e*x)**m/sqrt((a + b*x)**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b x + a\right )}{\left (e x + d\right )}^{m}}{\sqrt{b^{2} x^{2} + 2 \, a b x + a^{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(e*x+d)^m/(b^2*x^2+2*a*b*x+a^2)^(1/2),x, algorithm="giac")

[Out]

integrate((b*x + a)*(e*x + d)^m/sqrt(b^2*x^2 + 2*a*b*x + a^2), x)